Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



UkraineNeuroGlobal


UkraineNeuroGlobal

Міжнародний неврологічний журнал Том 19, №8, 2023

Повернутися до номеру

Сучасні уявлення про патогенетичні механізми розвитку хвороби дрібних судин

Автори: Тріщинська М.А. (1), Кононов О.Є. (1), Луценко Г.B. (1), Невгад Ю.В. (2), Романенко І.П. (2)
(1) - Національний університет охорони здоров’я України імені П.Л. Шупика, м. Київ, Україна
(2) - КНП «Київська обласна клінічна лікарня», м. Київ, Україна

Рубрики: Неврологія

Розділи: Довідник фахівця

Версія для друку


Резюме

Цереброваскулярна патологія посідає провідні позиції серед причин смертності та тривалої непрацездатності населення країн з високим, середнім та низьким рівнем доходів, що свідчить про надзвичайну актуальність пошуку нових стратегій щодо запобігання цим захворюванням. На сьогодні серед найбільш поширених форм цереброваскулярних захворювань виділяють гострий ішемічний інсульт та судинні когнітивні порушення, зокрема судинну деменцію. У патогенезі обох цих станів значущу роль відіграє ураження дрібних судин головного мозку. У статті проведений аналіз даних літератури щодо основних та вірогідних патогенетичних механізмів розвитку хвороби дрібних судин головного мозку. Ключові слова, за якими проводився підбір літератури у Національній медичній бібліотеці PubMed: хвороба дрібних судин, гіперінтенсивність білої речовини головного мозку, лакуни, розширені периваскулярні простори, атрофія мозку, судинні когнітивні порушення. Вивчення патогенетичних механізмів розвитку церебральної мікроангіопатії, або хвороби дрібних судин, дозволить спрямувати клінічні та наукові дослідження на пошук патогенетично обґрунтованого лікування та стратегії профілактики, що надзвичайно важливо для таких пацієнтів.

Cerebrovascular pathology occupies the leading position among the causes of mortality and long-term disability in high-, middle- and low-income countries, which indicates the extreme relevance of finding new strategies for the prevention of these diseases. Today, acute ischemic stroke and vascular cognitive disorders, including vascular dementia, are among the most common forms of cerebrovascular diseases. Damage to cerebral small vessels plays a significant role in the pathogenesis of both conditions. The article analyzed literature data on the main and probable pathogenetic mechanisms of cerebral small vessel disease. Keywords used to select the literature in PubMed National Library of Medicine included: small vessel disease, white matter hyperintensity, lacunae, enlarged perivascular spaces, brain atrophy, vascular cognitive disorders. The study of the pathogenetic mechanisms of cerebral microangiopathy or cerebral small vessel disease will allow clinical and scientific research to be directed to the search for pathogenetically justified treatment and prevention strategies, which is extremely important for such patients.


Ключові слова

церебральна мікроангіопатія; хвороба дрібних судин головного мозку; лейкоареоз; гіперінтенсивність білої речовини; розширення периваскулярних просторів; лакуни; лакунарні інфаркти; судинні когнітивні порушення; огляд

cerebral microangiopathy; small vessel disease; leukoaraiosis; white matter hyperintensity; enlarged perivascular spaces; lacunae; lacunar stroke; vascular cognitive disorders; review


Для ознайомлення з повним змістом статті необхідно оформити передплату на журнал.


Список літератури

1. Li Q., Yang Y., Reis C., Tao T., Li W., Li X., Zhang J.H. Cerebral Small Vessel Disease. Cell Transplant. 2018 Dec. 27(12). 1711-1722. doi: 10.1177/0963689718795148.
2. Chojdak-Łukasiewicz J., Dziadkowiak E., Zimny A., Paradowski B. Cerebral small vessel disease: A review. Adv. Clin. Exp. Med. 2021 Mar. 30(3). 349-356. doi: 10.17219/acem/131216. 
3. Wardlaw J.M., Smith C., Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013. 12. 483-497.
4. Khan U., Porteous L., Hassan A., Markus H.S. Risk factor profile of cerebral small vessel disease and its subtypes. J. Neurol. Neurosurg. Psychiatry. 2007. 78. 702-706.
5. Aribisala B.S., Morris Z., Eadie E., Thomas A., Gow A., Valdés Hernández M.C., et al. Blood pressure, internal carotid artery flow parameters, and age-related white matter hyperintensities. Hypertension. 2014. 63. 1011-1018.
6. Boulouis G., Charidimou A., Auriel E., Haley K.E., van Etten E.S., Fotiadis P., et al. Intracranial atherosclerosis and cerebral small vessel disease in intracerebral hemorrhage patients. J. Neurol. Sci. 2016. 369. 324-329.
7. Brisset M., Boutouyrie P., Pico F., Zhu Y., Zureik M., Schilling S., et al. Large-vessel correlates of cerebral small-vessel disease. Neurology. 2013. 80. 662-669.
8. Hannawi Y. Cerebral Small Vessel Disease: a Review of the Pathophysiological Mechanisms. Transl. Stroke Res. 2023 Oct 21. doi: 10.1007/s12975-023-01195-9. Epub ahead of print. PMID: 37864643.
9. Kitamura A., Saito S., Maki T., Oishi N., Ayaki T., Hattori Y., et al. Gradual cerebral hypoperfusion in spontaneously hypertensive rats induces slowly evolving white matter abnormalities and impairs working memory. J. Cereb. Blood Flow Metab. 2016. 36. 1592-1602.
10. Poels M.M., Zaccai K., Verwoert G.C., Vernooij M.W., Hofman A., van der Lugt A., et al. Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study. Stroke. 2012. 43. 2637-2642.
11. Wardlaw J.M., Smith C., Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019. 18. 684-96.
12. Gomes J., Wachsman A.M. Types of stroke. In: Corrigan M.L., Escuro A.A., Kirby D.F. Handbook of Clinical Nutrition and Stroke. New York, NY: Springer, 2013. 15-32.
13. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010. 9. 689-701. 
14. van Veluw S.J., Shih A.Y., Smith E.E., et al. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol. 2017. 16. 730-40.
15. Wardlaw J.M., Smith E.E., Biessels G.J., Cordonnier C., Fazekas F., Frayne R., et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013. 12. 822-838.
16. Debette S., Schilling S., Duperron M.G., Larsson S.C., Markus H.S. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and metaanalysis. JAMA Neurol. 2019. 76. 81-94.
17. Georgakis M.K., Duering M., Wardlaw J.M., Dichgans M. WMH and longterm outcomes in ischemic stroke: a systematic review and metaanalysis. Neurology. 2019. 92. e1298-308.
18. Poggesi A., Pasi M., Pescini F., Pantoni L., Inzitari D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review. J. Cereb. Blood Flow Metab. 2016. 36. 72-94.
19. Wardlaw J.M., Sandercock P.A., Dennis M.S., Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke. 2003. 34. 806-812.
20. Huisa B.N., Caprihan A., Thompson J., Prestopnik J., Qualls C.R., Rosenberg G.A. Long-term blood-brain barrier permeability changes in Binswanger disease. Stroke. 2015. 46. 2413-2418.
21. Tao W., Cheng Y., Guo W., Kwapong W.R., Ye C., Wu B., Zhang S., Liu M. Clinical features and imaging markers of small vessel disease in symptomatic acute subcortical cerebral microinfarcts. BMC Neurol. 2022 Aug 23. 22(1). 311. doi: 10.1186/s12883-022-02824-w. 
22. Wardlaw J.M., Doubal F., Armitage P., Chappell F., Carpenter T., Muñoz Maniega S., et al. Lacunar stroke is associated with diffuse blood-brain barrier dysfunction. Ann. Neurol. 2009. 65. 194-202.
23. Wardlaw J.M., Makin S.J., Valdés Hernández M.C., Armi-tage P.A., Heye A.K., Chappell F.M., et al. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimers Dement. 2017. 13. 634-643.
24. Zhang C.E., Wong S.M., van de Haar H.J., Staals J., Jansen J.F., Jeukens C.R., et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease. Neurology. 2017. 88. 426-432.
25. Farrall A.J., Wardlaw J.M. Blood-brain barrier. ageing and microvascular disease: systematic review and meta-analysis. Neurobiol. Aging. 2009. 30. 337-352.
26. Ihara M., Yamamoto Y. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease. Stroke. 2016. 47. 554-560.
27. Rajani R.M., Williams A. Endothelial cell-oligodendrocyte interactions in small vessel disease and aging. Clin. Sci. (Lond.). 2017. 131. 369-379.
28. Deplanque D., Lavallee P.C., Labreuche J., Gongora-Rivera F., Jaramillo A., Brenner D., et al. Cerebral and extracerebral vasoreactivity in symptomatic lacunar stroke patients: a casecontrol study. Int. J. Stroke. 2013. 8. 413-421.
29. Young V.G., Halliday G.M., Kril J.J. Neuropathologic correlates of white matter hyperintensities. Neurology. 2008. 71. 804-811.
30. Markus H.S., Hunt B., Palmer K., Enzinger C., Schmidt H., Schmidt R. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian Stroke Prevention Study. Stroke. 2005. 36. 1410-1414.
31. Fornage M., Chiang Y.A., O’Meara E.S., Psaty B.M., Rei-ner A.P., Siscovick D.S., et al. Biomarkers of inflammation and MRI-defined small vessel disease of the brain: the cardiovascular health study. Stroke. 2008. 39. 1952-1959.
32. Satizabal C.L., Zhu Y.C., Mazoyer B., Dufouil C., Tzourio C. Circulating IL-6 and CRP are associated with MRI findings in the elderly: the 3C-Dijon Study. Neurology. 2012. 78. 720-727.
33. van Dijk E.J., Prins N.D., Vermeer S.E., Vrooman H.A., Hofman A., Koudstaal P.J., et al. C-reactive protein and cerebral small-vessel disease: the Rotterdam Scan Study. Circulation. 2005. 112. 900-905.
34. Notsu Y., Nabika T., Bokura H., Suyama Y., Kobayashi S., Yamaguchi S., et al. Evaluation of asymmetric dimethylarginine and homocysteine in microangiopathy-related cerebral damage. Am. J. Hypertens. 2009. 22. 257-262.
35. Pikula A., Böger R.H., Beiser A.S., Maas R., DeCarli C., Schwedhelm E., et al. Association of plasma ADMA levels with MRI markers of vascular brain injury: Framingham offspring study. Stroke. 2009. 40. 2959-2964.
36. Kim Y., Kim Y.K., Kim N.K., Kim S.H., Kim O.J., Oh S.H. Circulating matrix metalloproteinase-9 level is associated with cerebral white matter hyperintensities in non-stroke individuals. Eur. Neurol. 2014. 72. 234-240.
37. Rouhl R.P., Damoiseaux J.G., Lodder J., Theunissen R.O., Knottnerus I.L., Staals J., et al. Vascular inflammation in cerebral small vessel disease. Neurobiol. Aging. 2012. 33. 1800-1806.
38. Rudilosso S., Mena L., Esteller D., Olivera M., Mengual J.J., Montull C., et al. Higher Cerebral Small Vessel Disease Burden in Patients with White Matter Recent Small Subcortical Infarcts. J. Stroke Cerebrovasc. Dis. 2021 Jul. 30(7). 105824. doi: 10.1016/j.jstrokecerebrovasdis.2021.105824. Epub 2021 Apr 25. 
39. Pescini F., Cesari F., Giusti B., Sarti C., Zicari E., Bianchi S., et al. Bone marrow-derived progenitor cells in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2010. 41. 218-223.
40. Kloppenborg R.P., Nederkoorn P.J., van der Graaf Y., Geerlings M.I. Homocysteine and cerebral small vessel disease in patients with symptomatic atherosclerotic disease. The SMARTMR study. Atherosclerosis. 2011. 216. 461-466.
41. Sachdev P., Parslow R., Salonikas C., Lux O., Wen W., Kumar R. et al. Homocysteine and the brain in midadult life: evidence for an increased risk of leukoaraiosis in men. Arch. Neurol. 2004. 61. 1369-1376.
42. Vermeer S.E., van Dijk E.J., Koudstaal P.J., Oudkerk M., Hofman A., Clarke R., et al. Homocysteine, silent brain infarcts, and white matter lesions: the Rotterdam Scan Study. Ann. Neurol. 2002. 51. 285-289.
43. Arsava E.M., Yilmaz E., Topcuoglu M.A. Incidental DWI Lesions in Patients with Recent Small Subcortical Infarctions. J. Stroke Cerebrovasc. Dis. 2022 Apr. 31(4). 106304. doi: 10.1016/j.jstrokecerebrovasdis.2022.106304. 
44. Bridges L.R., Andoh J., Lawrence A.J., Khoong C.H.L., Poon W., Esiri M.M., et al. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people. J. Neuropathol. Exp. Neurol. 2014. 73. 1026-1033.
45. Knottnerus I.L., Winckers K., Ten Cate H., Hackeng T.M., Lodder J., Rouhl R.P., et al. Levels of heparin-releasable TFPI are increased in first-ever lacunar stroke patients. Neurology. 2012. 78. 493-498.
46. Simpson J.E., Fernando M.S., Clark L., Ince P.G., Matthews F., Forster G., et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol. Appl. Neurobiol. 2007. 33. 410-419. 
47. Skoog I., Wallin A., Fredman P., Hesse C., Aevarsson O., Karlsson I., et al. A population study on blood-brain barrier function in 85-year-olds: relation to Alzheimer’s disease and vascular dementia. Neurology. 1998. 50. 966-971.
48. Pantoni L., Inzitari D., Pracucci G., Lolli F., Giordano G., Bracco L., et al. Cerebrospinal fluid proteins in patients with leucoaraiosis: possible abnormalities in blood-brain barrier function. J. Neurol. Sci. 1993. 115. 125-131.
49. Vogels S.C., Emmelot-Vonk M.H., Verhaar H.J., Koek H.L. The association of chronic kidney disease with brain lesions on MRI or CT: a systematic review. Maturitas. 2012. 71. 331-336.
50. Stehouwer C.D., Smulders Y.M. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J. Am. Soc. Nephrol. 2006. 17. 2106-2111.
51. Uiterwijk R., van Oostenbrugge R.J., Huijts M., De Leeuw P.W., Kroon A.A., Staals J. Total cerebral small vessel disease MRI score is associated with cognitive decline in executive function in patients with hypertension. Front. Aging Neurosci. 2016. 8. 301.
52. Gattringer T., Pinter D., Enzinger C., Seifert-Held T., Kne-ihsl M., Fandler S., et al. Serum neurofilament light is sensitive to active cerebral small vessel disease. Neurology. 2017. 89. 2108-2114.
53. Armulik A., Abramsson A., Betsholtz C. Endothelial/pericyte interactions. Circ. Res. 2005. 97. 512-523.
54. Rajashekhar G., Willuweit A., Patterson C.E., Sun P., Hilbig A., Breier G., et al. Continuous endothelial cell activation increases angiogenesis: evidence for the direct role of endothelium linking angiogenesis and inflammation. J. Vasc. Res. 2006. 43. 193-204. 
55. Vermeer S.E., Longstreth W.T. Jr, Koudstaal P.J. Silent brain infarcts: a systematic review. Lancet Neurol. 2007. 6. 611-619.
56. Norrving B. Evolving concept of small vessel disease through advanced brain imaging. J. Stroke. 2015. 17. 94-100.
57. Staals J., Makin S.D., Doubal F.N., Dennis M.S., Wardlaw J.M. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology. 2014. 83. 1228-1234.
58. Lyoubi-Idrissi A.L., Jouvent E., Poupon C., Chabriat H. Diffusion magnetic resonance imaging in cerebral small vessel disease. Rev. Neurol. (Paris). 2017. 173. 201-210.
59. Blair G., Thrippleton M.J., Shi Y., et al. Intracranial functional haemodynamic relationships in patients with cerebral small vesseldisease. bioRxiv. 2019. 572818.
60. De Guio F., Mangin J.F., Duering M., Ropele S., Chabriat H., Jouvent E. White matter edema at the early stage of cerebral autosomaldominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2015. 46. 258-61.
61. Rost N.S., Cougo P., Lorenzano S., et al. Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. J. Cereb. Blood Flow Metab. 2018. 38. 75-86.
62. Sam K., Crawley A.P., Conklin J., et al. Development of white matter hyperintensity is preceded by reduced cerebrovascular reacti-vity. Ann. Neurol. 2016. 80. 277-85.
63. Shi Y., Thrippleton M.J., Blair G.W., et al. Small vessel dise-ase is associated with altered cerebrovascular pulsatility but not res-ting cerebral blood flow J. Cereb. Blood Flow Metab. 2018. published online Oct 8. DOI: 10.1177/0271678X18803956.
64. van Leijsen E.M.C., van Uden I.W.M., Ghafoorian M., et al. Nonlinear temporal dynamics of cerebral small vessel disease: the RUN DMC study. Neurology. 2017. 89. 1569-77.
65. Kario K., Matsuo T., Kobayashi H., Hoshide S., Shimada K. Hyperinsulinemia and hemostatic abnormalities are associated with silent lacunar cerebral infarcts in elderly hypertensive subjects. J. Am. Coll. Cardiol. 2001. 37. 871-877.

Повернутися до номеру