Статья опубликована на с. 53-56
Стрессиндуцированная гипергликемия (СГ) — это увеличение содержания глюкозы в крови больных или пострадавших до 6,1–11,0 ммоль/л и более (без указаний на наличие сахарного диабета в анамнезе). СГ возможна и у больных с сахарным диабетом, когда в результате возникновения критического состояния у пациентов с компенсированными формами сахарного диабета резко повышается уровень сахара в крови вплоть до развития кетоацидоза, который часто является причиной развития коматозного состояния и острой церебральной недостаточности.
Патогенез гипергликемии при критических состояниях:
— гипергликемия является одним из проявлений синдрома гиперметаболизма, характерного для критических состояний различной природы, обусловленного повышением уровня контринсулярных гормонов, активацией липолиза, протеолиза и цикла Кори;
— важную роль в стабилизации гипергликемии в условиях стрессорного ответа на повреждение играет резистентность к инсулину клеток скелетной мускулатуры, гепатоцитов, жировой ткани в сочетании с относительной инсулиновой недостаточностью, связанной с ограниченной компенсаторной способностью β-клеток поджелудочной железы;
— в ряде случаев гипергликемия связана с особенностями терапии. Усилению и поддержанию инициированной эндогенными медиаторами гипергликемии может способствовать ряд лекарственных средств, широко используемых в практике интенсивной терапии. В первую очередь это относится к адреналину и другим симпатомиметикам из-за стимуляции α-адренорецепторов, глюкокортикостероидам, некоторым цитостатикам (циклоспорин, такролимус);
— гипергликемия может быть и результатом некорректно проводимого парентерального или энтерального питания;
— гипергликемия (после хирургической травмы) может быть результатом неадекватной анестезиологической защиты и неоптимального выбора ее метода (например, эпидуральная анестезия в большей степени, чем ингаляционная анестезия, предотвращает риск развития стрессиндуцированной гипергликемии в послеоперационном периоде) [1, 12].
Следует отметить, что при разных критических состояниях доминируют различные механизмы, реализующие стрессиндуцированную гипергликемию. Так, при механической травме главной причиной является повышение продукции глюкозы в печени, а не нарушение ее утилизации тканями. При тяжелых ожогах на начальных этапах глюкагон — ведущий фактор, способствующий поддержанию гипергликемии. В дальнейшем, несмотря на повышение уровня инсулина в крови, сохраняющаяся длительное время гипергликемия (более 3 недель) в большей степени связана с инсулинорезистентностью. У септических больных, а также после травматичных оперативных вмешательств наиболее существенное значение в запуске стрессиндуцированной гипергликемии имеют провоспалительные цитокины.
Стрессиндуцированная гипергликемия служит не только признаком тяжести состояния, но и дополнительным фактором органно-системного повреждения. Гипергликемия в сочетании с инсулинорезистентностью может оказывать значимое дополнительное повреждающее воздействие, способствуя усугублению органной дисфункции посредством следующих трех механизмов:
— снижения кислородного транспорта и нарушения водно-электролитного гомеостаза из-за стимуляции диуреза и дополнительных потерь жидкости;
— стимуляции катаболизма структурных белков в силу недостатка поступления глюкозы в клетку;
— гликозилирования белковых молекул и снижения их функциональной активности.
Независимо от причины, вызвавшей СГ, необходим строгий контроль уровня глюкозы и поддержание нормогликемии у пациентов, находящихся в критическом состоянии, поскольку стрессиндуцированная гипергликемия — не просто критерий тяжести состояния, но и фактор, непосредственно влияющий на течение патологического процесса [10–12].
Существуют доказательства бесспорной клинической значимости гипергликемии при инсульте. В ходе экспериментальных и клинических исследований получены данные, свидетельствующие о влиянии СГ на увеличение зоны ишемического повреждения не только при ишемическом инсульте, но и при черепно-мозговой травме (ЧМТ), энцефалопатиях различного происхождения. В то же время клинически трудно в ряде случаев выяснить, особенно у больных с энцефалопатиями, что послужило причиной ухудшения состояния: основной процесс или гипергликемия с развившимся кетоацидозом? Особенно в тех случаях, когда сахарный диабет развился у пациента бессимптомно.
Статистически значимая корреляция обнаружена между содержанием глюкозы, фотореакцией зрачков и величиной внутричерепного давления в первые 24 ч после ЧМТ. А у пациентов с тяжелой ЧМТ уровень глюкозы, превышающий 11 ммоль/л, ассоциировался с неблагоприятным исходом. У оперированных больных содержание глюкозы в крови являлось независимым предиктором исхода на протяжении 6 мес. Негативные последствия СГ связывают с повышением проницаемости гематоэнцефалического барьера, развитием ацидоза, которые могли способствовать расширению области инфаркта, отека мозга [2, 3, 7, 8].
Аналогичные выводы о влиянии СГ были сделаны и для популяции больных с инсультом и тяжелыми энцефалопатиями различного генеза, особенно это касается больных с сахарным диабетом в анамнезе. Наряду со снижением выживаемости (через 30 дней, 1 год и 6 лет) показано отрицательное влияние на функциональный исход у выживших больных, увеличение сроков госпитализации и материальных затрат.
Одним из принципов современной защиты мозга у пациентов с острой церебральной недостаточностью является полный отказ от введения глюкозы в первые 2–3 суток от начала острого повреждения головного мозга, а также отказ от терапии глюкокортикостероидами, которые способствуют развитию гипергликемии. Поврежденный головной мозг не в состоянии полноценно метаболизировать глюкозу до конечных продуктов обмена, вследствие чего в нейронах накапливаются промежуточные недоокисленные продукты обмена, которые вызывают повышение осмолярности внутриклеточной жидкости и, как следствие, набухание нейронов и формирование отека-набухания головного мозга. В то же время отказ от применения глюкозы у пациентов с сахарным диабетом приводит к увеличению тяжести кетоацидоза и прогрессированию энцефалопатии по токсико-метаболическому механизму [6–8].
Предположительно, у пациентов с сахарным диабетом, у которых синдром острой церебральной недостаточности развился на фоне острого ишемического инсульта или на фоне дисциркуляторной энцефалопатии, положительное действие может оказать обеспечение организма другими источниками энергии, которые, с одной стороны, не будут способствовать развитию отека головного мозга, а с другой стороны — оказывать антикетогенное действие.
Несмотря на то, что глюкоза выступает основным источником энергии и углеводов, а также имеет отношение к наиболее важным компонентам коррекции белкового обмена, в интенсивной терапии используют и другие энергетические субстраты. К ним можно отнести этанол, инвертный сахар, ксилитол и сорбитол.
Несмотря на определенное положительное фармакологическое действие, указанные препараты имеют целый ряд побочных эффектов, которые существенно ограничивают их применение.
В последние годы появились препараты для коррекции энергетического обмена, содержащие фруктозу. Фруктоза — инсулинонезависимый в отношении интрацеллюлярности транспорта моносахарид из ряда гексоз. Отличается от других энергетических субстратов быстрой элиминацией из сосудистого русла, более быстрым, чем глюкоза, превращением в гликоген. Она обладает более выраженным антикетогенным эффектом, белоксохраняющим и гепатопротекторным действием. Целесообразность применения фруктозы как лекарственного средства диктуется условиями развития энергетического метаболизма при различных критических состояниях, при которых имеют место крайне минимизированная регуляторная роль инсулина, супрессия транспорта глюкозы в ткани и прогрессирующий рост гипергликемии за счет возрастающей потребности в энергетическом субстрате и отсутствия возможности его адекватной метаболизации. Последнее усиливает катаболизм белков, создавая отрицательный азотистый баланс. Поэтому в условиях метаболизации фруктозы возможно достижение ингибирующего эффекта усиленного катаболизма белка за счет биохимического ингибирования глюконеогенеза.
Основная цель, достигаемая использованием фруктозы в условиях описанной ситуации, — это поддержание течения гликолиза до конечного его продукта пирувата и активация гликогенеза, что расценивается как возможность разрешения гипергликемического синдрома с продолжением метаболизации глюкозы [1, 4, 9].
Применение альтернативного энергетического субстрата — фруктозы создает условия для экономичности метаболизма за счет избегания энергетических затрат на ряд процессов, связанных с запуском гликолитического пути (гликолиза). При этом:
— отсутствует инсулинозависимое сопровождение интрацеллюлярного транспорта для молекулы фруктозы в тканях, где имеет место инсулиновая зависимость транспортных процессов глюкозы;
— отсутствует транспорт глюкозы, а вместе с тем и необходимость внутриклеточного активирования молекулы глюкозы фосфорилированием до глюкозо-6-фосфата;
— отсутствует необходимость участия фермента фосфогексозоизомеразы для изомеризации глюкозо-6-фосфата во фруктозо-6-фосфат;
— начало гликолитического пути осуществляется сразу же с появления фруктозо-6-фосфата под влиянием лимитирующего гликолиз фермента гексокиназы (глюкокиназы), который обладает относительной неспецифичностью к субстрату (глюкоза, фруктоза).
Гликолиз начинается с реакции преобразования фруктозо-6-фосфата в фруктозо-1,6-бифосфат и далее соответственно эволюционно обусловленному течению метаболизации глюкозы, поскольку включение фруктозы не искажает поток реакций гликолитического пути. К тому же в связи с этим не изменяются последовательность и течение митохондриальных энергозависимых процессов. С включением фруктозы как альтернативного энергетического субстрата некоторое сокращение гликолитического потока создает условия, ускоряющие подключение смежных метаболических путей в местах пересечения с гликолизом [4, 8].
Велика роль метаболизации фруктозы и в активации гликогенеза как варианта компенсации гликогенобразующей функции инсулина и дополнительной возможности разрешения гипергликемии, не связанной с диабетом. Для описания участия фруктозы в механизме образования гликогена (гликогенез) имеет смысл вспомнить классическое представление об этом процессе.
Биохимическая основа гликогена — это молекула глюкозы. Соединение цепи молекул глюкозы образует полимерную структуру молекулы гликогена, которая описывается формулой: (глюкоза) n + 1. Решающую роль в осуществлении гликогенеза играют два ключевых фермента — гексокиназа и гликогенсинтаза, которые настолько необходимы, что без первого не может быть начат процесс гликогенеза, а без второго — не может быть завершен. Обращает на себя внимание тот факт, что в случае преобладающей метаболизации фруктозы возможно некоторое изменение в системе участия ферментов в отношении стехиометрических превращений в процессе гликогенеза. Тогда на этапе превращения фруктозо-6-фосфата в глюкозо-6-фосфат дополнительно включается фермент глюкозофосфатизомераза [5, 6].
Кроме того, соединение фруктозо-1-фосфат, которое вне гликолиза образуется при активации фруктозой фермента фруктокиназы, специфического только для ткани печени, проявляет ингибирующее влияние на активность фермента фосфорилазы, который активирует расщепление гликогена. Дальнейшее превращение фруктозо-1-фосфата обеспечивает продукцию соединений, которые участвуют в реакциях гликолиза (глицеральдегид-3-фосфат и диоксиацетонфосфат). Таким образом, проявляется дополнительный, непрямой путь поддержания не только гликолиза, но и гликогенеза, инициированный фруктозой [1].
В отдельных экспериментальных и клинических исследованиях показан позитивный эффект применения фруктозы при острых состояниях организма. Доказана существенная значимость фруктозы в активации гексокиназы, аккумуляции глюкозо-6-фосфата и особенности соотношения с уровнем внутриклеточного аденозинтрифосфата.
Позитивный эффект влияния фруктозы, опосредованный прямо или косвенно активацией гексокиназы (глюкокиназы), показан на фоне септического процесса. Описано усиление захвата глюкозы печенью и связь с синтезом гликогена при развившейся резистентности к инсулину тканей по 2-му типу диабета или гипергликемии в связи с влиянием инфекционного или септического фактора. В анализе полученных данных авторы прямо указывают на активацию фруктозой печеночной гексокиназы, предполагая при этом для сохранения эффекта возможность продолжительного введения фруктозы по типу парентерального питания. Заслуживают внимания данные экспериментальной работы, в которой показано нивелирование повышенной концентрации глюкозы крови инфицированных животных при длительной (до 5 дней) инфузии раствора фруктозы. Данные описанных выше исследований имеют существенное значение для понимания роли фруктозы в коррекции углеводного обмена, нарушенного в связи с активированием глюконеогенеза под влиянием септического фактора, к тому же усиленного доминированием контринсулярного комплекса [1, 2, 6].
Аналогичные результаты получены в клинике. Так, исследование с инфузией раствора фруктозы в режиме различного дозирования у пациентов с диабетом 2-го типа показало с высоким уровнем достоверности дозозависимый эффект снижения гипергликемии. Результаты этого наблюдения выявили положительный эффект фруктозы относительно восстановления метаболизации глюкозы и активирования гексокиназы (глюкокиназы).
Важно подчеркнуть, что эффект влияния фруктозы не нарушает биохимизм основного обмена, но в результате происходит положительная коррекция процесса метаболизации глюкозы [2, 4].
Таким образом, описанные биохимические преобразования в связи с метаболизацией вводимой фруктозы как лекарственного средства при критическом состоянии организма обеспечивают, в сущности, метаболизацию глюкозы. При этом интрацеллюлярный транспорт включения фруктозы является инсулинонезависимым, а последующая ее метаболизация, с одной стороны, инициирует течение гликолиза, а с другой — активирует анаболический процесс углеводного обмена, которым является синтез гликогена, тем самым как бы компенсируя роль инсулина. Введение экзогенной фруктозы создает возможность стабилизации, а далее — разрешения нарастания гипергликемии с ингибированием глюконеогенеза на основе конкурирующих отношений с активированием фруктозой гликолитического потока и индукции гликогенеза [9, 11].
В настоящее время в качестве лечебного препарата широко применяется полиионный фруктозосодержащий раствор Гликостерил Ф5 и Ф10. Этот препарат целесообразно рассматривать как экзогенный энергетический субстрат, метаболизм которого способен нивелировать целый ряд патологических биохимических изменений, связанных с формированием стрессиндуцированной гипергликемии у пациентов как с диабетом, так и без него [10, 12]. Необходимо отметить еще одно важное свойство гликостерила — его полиионность. В большинстве клинических ситуаций мы используем моноионные растворы (в основном натрия хлорида), а потом поражаемся, что у больного возникают определенные осложнения от проводимой терапии. Наличие у Гликостерила сбалансированного электролитного состава позволяет со значительно большим клиническим эффектом стабилизировать состояние пациента, что связано не только с оптимизацией энергетического потенциала, но и с нормализацией электролитного баланса.
Таким образом, нивелирование стрессиндуцированной гипергликемии при критических состояниях может быть достигнуто включением в комплекс интенсивной терапии метаболических субстратов с инсулинонезависимым интрацеллюлярным транспортом, среди которых определенное значение имеют инфузионные среды, содержащие фруктозу.
Список литературы
1. Обухова О.А., Кашия Ш.Р., Курмуков И.А., Салтанов И.А. Гипергликемия при критических состояниях: возможные пути решения проблемы // Медицина неотложных состояний. — 2011. — № 4. — С. 49-53.
2. Рябов Г.А. Синдромы критических состояний. — М., 1994. — 368 с.
3. Афанасьев В.В. Клиническая фармакология реамберина. — СПб., 2005. — 28 с.
4. Kadawaki S., Okamura Т., Hozawa A. et al. Relationship of elevated casual blood glucose level with coronary heart disease, cardiovascular disease and allcause mortality in a representative sample of the Japanese population. NIPPON DATA80 // Diabetologia. — 2008. — V. 16. — P. 354-355.
5. Barsheshet A., Garty M., Grossman E. et al. Admission blood glucose level and mortality among hospitalized nondiabetic patients with heart failure // Arch. Intern. Med. — 2006. — V. 166 (15). — P. 1613-1619.
6. Van der Horst I.С., Nijsten M.W., Vogelzang M., Zijlstra F. Persistent hyperglycemia is an independent predictor of outcome in acute myocardial infarction // Cardiovasc. Diabetol. — 2007. — V. 6. — P. 32-35.
7. Руднов B.C. Клиническая значимость и возможные пути коррекции гипергликемии при критических состояниях // Consilium Medicum. — 2006. — № 7. — С. 13-15.
8. Віннічук С.М. Прогностичне значення стресової гіперглікемії після гострого ішемічного інсульту // Український медичний часопис. — 2003. — № 6 (38). — С. 79-84.
9. Клігуненко О.М., Сорокіна О.Ю., Слінченков В.В., Муслін В.П. та ін. Компоненти інфузійно-трансфузійної тepaniї опікового шоку i рання нутритивна підтримка у пацієнтів з тяжкою термічною травмою // Науковий вісник Ужгородського університету. — 2006. — № 27. — С. 39-41.
10. Сорокина Е.Ю., Клигуненко Е.Н., Слинченков В.В. и др. Опыт использования гликостерила как компонента инфузионно-трансфузионной терапии у пациентов с тяжелой термической травмой // Біль, знеболювання i інтенсивна терапія. — 2006. — № 1(д). — С. 93-95.
11. Nishi Т., Kido Y., Ogawa A., Furuya E., Mori T. Effect of fructose on glycogen synthesis in the perfused rat liver // Biochem. Int. — 1990. — V. 20(2). — P. 329-335.
12. Мосенцев Н.Ф., Усенко Л.В., Мальцева Л.А. и др. Альтернативные компоненты коррекции микроциркуляторно-митохондриальной дисфункции у больных с тяжелым сепсисом и септическим шоком: Метод. реком. — Днепропетровск, 2006. — 32 с.