Международный эндокринологический журнал Том 20, №8, 2024
Вернуться к номеру
Порушення циркадних ритмів варіабельності ритму серця при діабетичній кардіальній автономній нейропатії: механізми та наслідки
Авторы: V.A. Serhiyenko (1), M.I. Dolynay (2), V.B. Sehin (1), Y.V. Lazur (3), A.A. Serhiyenko (1)
(1) - Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
(2) - Mukachevo State University, Mukachevo, Ukraine
(3) - Uzhhorod National University, Uzhorod, Ukraine
Рубрики: Эндокринология
Разделы: Справочник специалиста
Версия для печати
Порушення варіабельності ритму серця (ВРС) може збільшити ризик серцево-судинних захворювань протягом наступних шести років від 4 до 100 %. Повідомляється, що хронобіологічна оцінка ВРС та своєчасна оптимізація лікування дозволяють зменшити ризик інсульту або серцевої смерті. Фізіологічна серцево-судинна діяльність знаходиться під контролем вегетативної нервової системи. Пошкодження вегетативних нервів викликає порушення контролю частоти серцевих скорочень і судинної динаміки, особливо при кардіальній автономній нейропатії (КАН). Вегетативний дисбаланс у регуляції серцево-судинної функції симпатичною (СНС) та парасимпатичною нервовою системою (ПСНС) призводить до метаболічних порушень і значної захворюваності й смертності серед осіб із цукровим діабетом (ЦД). У них виявляють порушення циркадних ритмів. Існує тісний зв’язок між змінами нейроендокринної архітектури сну, коливаннями біологічного годинника, метаболізмом глюкози, вегетативною функцією та добовими профілями артеріального тиску й частоти серцевих скорочень. Метаболічний синдром, артеріальна гіпертензія, інфаркт міокарда та ЦД характеризуються підвищеною активністю СНС і зниженою — ПСНС. Однак у хворих на ЦД 2-го типу спостерігається зниження активності як ПСНС, так і СНС. Це можна пояснити тим, що ЦД 2-го типу є метаболічним захворюванням, яке спричиняє КАН, вражаючи симпатичні й парасимпатичні волокна. Метою цього огляду було обговорення сучасного стану проблеми взаємозв’язку ЦД і порушень циркадного ритму, ВРС. Особливу увагу приділено факторам ризику діабетичної КАН; механізмам збільшення смертності, пов’язаної з КАН; патогенезу діабетичної КАН; можливим патогенетичним шляхам, що пов’язують КАН та прогресування атеросклерозу; генетичним, епігенетичним особливостям і КАН; ЦД та циркадним ритмам ВРС; діабетичній КАН і порушенням циркадного ритму ВРС. Пошук проводився в Scopus, Science Direct (від Elsevier) і PubMed, включно з базами даних MEDLINE. Використані ключові слова «цукровий діабет», «кардіальна автономна нейропатія», «циркадні ритми», «варіабельність ритму серця». Для виявлення результатів досліджень, які не вдалося знайти під час онлайн-пошуку, використовувався ручний пошук бібліографії публікацій.
Abnormalities in heart rate variability (HRV) may increase the risk of cardiovascular disease over the next six years from 4 to 10 %. It is reported that the probability of stroke or cardiac death can be immediately reduced by chronobiologically assessing HRV and optimizing timed treatment efficacy. Physiological cardiovascular activities are under the control of the cardiac autonomic nervous system. Damage to the autonomic nerves results in dysfunction in heart rate control and vascular dynamics, particularly in cardiac autonomic neuropathy (CAN). Autonomic imbalance in the sympathetic (SNS) and parasympathetic nervous systems (PSNS) regulation of cardiovascular function contributes to metabolic abnormalities and significant morbidity and mortality for individuals with diabetes mellitus (DM). Misalignment of circadian rhythms has been evidenced in patients with DM, and there is a close relationship between alterations in neuroendocrine sleep architecture, circadian clock oscillations, glucose metabolism, autonomic function, and diurnal profiles of blood pressure and heart rate. Metabolic syndrome, hypertension, myocardial infarction, and DM are characterized by increased SNS activity and decreased PSNS activity. However, type 2 DM patients had a decrease in both PSNS and SNS activity. It can be explained by type 2 DM, which is a metabolic disease responsible for CAN that affects both sympathetic and parasympathetic fibers. The purpose of this review was to discuss the current state of the problem of the relationship between DM and circadian rhythm disorders, HRV. Particular attention is paid to the risk factors of diabetic CAN; insights into the mechanisms of excess mortality associated with CAN; the pathogenesis of diabetic CAN; possible pathogenic pathways binding CAN and atherosclerosis progression; genetic and epigenetic factors and CAN; DM and circadian rhythms of HRV; diabetic CAN and circadian rhythm disorders. The search was conducted in Scopus, Science Direct (from Elsevier), and PubMed, including MEDLINE databases. The keywords used were diabetes mellitus, cardiac autonomic neuropathy, circadian rhythms, heart rate variability. A manual search of the bibliography of publications was used to identify study results that could not be found during the online search.
цукровий діабет; кардіальна автономна нейропатія; циркадні ритми; варіабельність ритму серця; огляд літератури
diabetes mellitus; cardiac autonomic neuropathy; circadian rhythms; heart rate variability; review
Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.
- Zillner L, Andreas M, Mach M. Wearable heart rate variability and atrial fibrillation monitoring to improve clinically relevant endpoints in cardiac surgery — a systematic review. Mhealth. 2023 Dec 12;10:8. doi: 10.21037/mhealth-23-19.
- Stangherlin A, Seinkmane E, O’Neill JS. Understanding circadian regulation of mammalian cell function, protein homeostasis, and metabolism. Curr Opin Syst Biol. 2021 Dec;28. doi: 10.1016/j.coisb.2021.100391.
- Black N, D’Souza A, Wang Y, et al. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms. Heart Rhythm. 2019 Feb;16(2):298-307. doi: 10.1016/j.hrthm.2018.08.026.
- Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Features of circadian rhythms of heart rate variability, arterial stiffness and outpatient monitoring of blood pressure in diabetes mellitus: data, mecha–nisms and consequences. In: Sinha RP, eds. Circadian Rhythms and Their Importance. New York: Nova Science Publishers; 2022. Ch 9. 279-341. doi: 10.52305/GXME8274.
- Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017 Mar;18(3):164-179. doi: 10.1038/nrg.2016.150.
- Otobe Y, Jeong EM, Ito S, et al. Phosphorylation of DNA-bin–ding domains of CLOCK-BMAL1 complex for PER-dependent inhibition in circadian clock of mammalian cells. Proc Natl Acad Sci USA. 2024 Jun 4;121(23):e2316858121. doi: 10.1073/pnas.2316858121.
- Starnes AN, Jones JR. Inputs and outputs of the mammalian circadian clock. Biology (Basel). 2023 Mar 28;12(4):508. doi: 10.3390/biology12040508.
- Hayter EA, Wehrens SMT, Van Dongen HPA, et al. Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia. Nat Commun. 2021 Apr 30;12(1):2472. doi: 10.1038/s41467-021-22788-8.
- Li K, Cardoso C, Moctezuma-Ramirez A, Elgalad A, Pe–rin E. Heart rate variability measurement through a smart wearable device: another breakthrough for personal health monitoring? Int J Environ Res Public Health. 2023 Dec 6;20(24):7146. doi: 10.3390/ijerph20247146.
- Tiwari R, Kumar R, Malik S, Raj T, Kumar P. Analysis of heart rate variability and implication of different factors on heart rate variability. Curr Cardiol Rev. 2021;17(5):e160721189770. doi: 10.2174/1573403X16999201231203854.
- Rhee KS, Hsueh CH, Hellyer JA, et al. Cervical vagal nerve stimulation activates the stellate ganglion in ambulatory dogs. Korean Circ J. 2015 Mar;45(2):149-157. doi: 10.4070/kcj.2015.45.2.149.
- Oster H, Challet E, Ott V, et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 2017 Feb 1;38(1):3-45. doi: 10.1210/er.2015-1080.
- Luca AC, David SG, David AG, et al. Atherosclerosis from newborn to adult-epidemiology, pathological aspects, and risk factors. Life. 2023;13(10):2056. doi: 10.3390/life13102056.
- Dafaalla MD, Nimir MN, Mohammed MI, Ali OA, Hussein A. Risk factors of diabetic cardiac autonomic neuropathy in patients with type 1 diabetes mellitus: a meta-analysis. Open Heart. 2016 Oct 6;3(2):e000336. doi: 10.1136/openhrt-2015-000336.
- Balcıoğlu AS, Müderrisoğlu H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequen–ces, diagnosis and treatment. World J Diabetes. 2015 Feb 15;6(1):80-91. doi: 10.4239/wjd.v6.i1.80.
- Bissinger A. Cardiac autonomic neuropathy: why should cardiologists care about that? J Diabetes Res. 2017;2017:5374176. doi: 10.1155/2017/5374176.
- Ziegler D, Herder C, Papanas N. Neuropathy in prediabetes. Diabetes Metab Res Rev. 2023 Nov;39(8):e3693. doi: 10.1002/dmrr.3693.
- Mala S, Potockova V, Hoskovcova L, et al. Cardiac autonomic neuropathy may play a role in pathogenesis of atherosclerosis in type 1 diabetes mellitus. Diabetes Res Clin Pract. 2017 Dec;134:139-144. doi: 10.1016/j.diabres.2017.10.002.
- Serhiyenko VA, Serhiyenko AA. Diabetic cardiac autonomic neuropathy. In: Saldaña JR, eds. The Diabetes Textbook: Clinical Principles, Patient Management and Public Health Issues. Basel: Springer, Cham, Springer Nature Switzerland AG; 2023. Section 53. 939-966. doi: 10.1007/978-3-031-25519-9_57.
- Lou M, Luo P, Tang R, et al. Relationship between neutrophil-lymphocyte ratio and insulin resistance in newly diagnosed type 2 diabetes mellitus patients. BMC Endocr Disord. 2015 Mar 2;15:9. doi: 10.1186/s12902-015-0002-9.
- Andersen ST, Witte DR, Fleischer J, et al. Risk factors for the presence and progression of cardiovascular autonomic neuropathy in type 2 diabetes: ADDITION-Denmark. Diabetes Care. 2018 Dec;41(12):2586-2594. doi: 10.2337/dc18-1411.
- Li L, Chen J, Wang J, Cai D. Prevalence and risk factors of diabetic peripheral neuropathy in type 2 diabetes mellitus patients with overweight/obese in Guangdong province, China. Prim Care Diabetes. 2015 Jun;9(3):191-195. doi: 10.1016/j.pcd.2014.07.006.
- Greco C, Spallone V. Obstructive sleep apnoea syndrome and diabetes. Fortuitous association or interaction? Curr Diabetes Rev. 2015;12(2):129-155. doi: 10.2174/1573399811666150319112611.
- Abboud FM, Singh MV. Autonomic regulation of the immune system in cardiovascular diseases. Adv Physiol Educ. 2017 Dec 1;41(4):578-593. doi: 10.1152/advan.00061.2017.
- Hansen CS, Vistisen D, Jørgensen ME, et al. Adiponectin, biomarkers of inflammation and changes in cardiac autonomic function: Whitehall II study. Cardiovasc Diabetol. 2017 Dec 1;16(1):153. doi: 10.1186/s12933-017-0634-3.
- Herder C, Schamarek I, Nowotny B, et al.; German Diabetes Study Group. Inflammatory markers are associated with cardiac autonomic dysfunction in recent-onset type 2 diabetes. Heart. 2017 Jan 1;103(1):63-70. doi: 10.1136/heartjnl-2015-309181.
- Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophy–siology of obesity. Front Physiol. 2017 Sep 14;8:665. doi: 10.3389/fphys.2017.00665.
- Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabetes Metab J. 2019 Feb;43(1):3-30. doi: 10.4093/dmj.2018.0259.
- Gong Q, Zhang P, Wang J, et al.; Da Qing Diabetes Prevention Study Group. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019 Jun;7(6):452-461. doi: 10.1016/S2213-8587(19)30093-2.
- Liu Y, Wang Z, Xie W, Gu Z, Xu Q, Su L. Oxidative stress re–gulates mitogen-activated protein kinases and c-Jun activation involved in heat stress and lipopolysaccharide-induced intestinal epithelial cell apoptosis. Mol Med Rep. 2017 Sep;16(3):2579-2587. doi: 10.3892/mmr.2017.6859.
- Xu W, Zhu Y, Yang X, et al. Glycemic variability is an important risk factor for cardiovascular autonomic neuropathy in newly diagnosed type 2 diabetic patients. Int J Cardiol. 2016 Jul 15;215:263-268. doi: 10.1016/j.ijcard.2016.04.078.
- Liu Y, Peng Y, Jin J, et al. Insulin resistance is independently associated with cardiovascular autonomic neuropathy in type 2 diabetes. J Diabetes Investig. 2021 Sep;12(9):1651-1662. doi: 10.1111/jdi.13507.
- Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Omega-3 polyunsaturated fatty acids in the treatment of diabetic cardiovascular autonomic neuropathy: A review. In: Moore SJ, ed. Omega-3: Dietary sources, biochemistry and impact on human health. New York: Nova Science Publishers; 2017. 79-154.
- Niiranen TJ, Lyass A, Larson MG, et al. Prevalence, correlates, and prognosis of healthy vascular aging in a Western community-dwelling cohort: The Framingham Heart Study. Hypertension. 2017 Aug;70(2):267-274. doi: 10.1161/HYPERTENSIONAHA.117.09026.
- Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autono–mic neuropathy in patients with diabetes mellitus. World J Diabetes. 2014 Feb 15;5(1):17-39. doi: 10.4239/wjd.v5.i1.17.
- Jaiswal M, Divers J, Urbina EM, et al.; SEARCH for Diabetes in Youth Study Group. Cardiovascular autonomic neuropathy in adolescents and young adults with type 1 and type 2 diabetes: The SEARCH for Diabetes in Youth Cohort Study. Pediatr Diabetes. 2018 Jun;19(4):680-689. doi: 10.1111/pedi.12633.
- Serhiyenko VA, Serhiyenko LM, Sehin VB, Serhiyenko AA. Effect of alpha-lipoic acid on arterial stiffness parameters in type 2 diabetes mellitus patients with cardiac autonomic neuropathy. Endocr Regul. 2021;55(4):224-233. doi: 10.2478/enr-2021-0024.
- Nattero-Chávez L, Redondo López S, Alonso Díaz S, et al. Association of cardiovascular autonomic dysfunction with peripheral arterial stiffness in patients with type 1 diabetes. J Clin Endocrinol Metab. 2019 Jul 1;104(7):2675-2684. doi: 10.1210/jc.2018-02729.
- Liu SL, Bajpai A, Hawthorne EA, et al. Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight. 2019 Jan 10;4(1):e122742. doi: 10.1172/jci.insight.122742.
- Eleftheriadou A, Williams S, Nevitt S, et al. The prevalence of cardiac autonomic neuropathy in prediabetes: a systematic review. Diabetologia. 2021 Feb;64(2):288-303. doi: 10.1007/s00125-020-05316-z.
- Lacolley P, Regnault V, Laurent S. Mechanisms of arte–rial stiffening: from mechanotransduction to epigenetics. Arterioscler Thromb Vasc Biol. 2020 May;40(5):1055-1062. doi: 10.1161/ATVBAHA.119.313129.
- Maskari RA, Hardege I, Cleary S, et al. Functional cha–racterization of common BCL11B gene desert variants suggests a lymphocyte-mediated association of BCL11B with aortic stiffness. Eur J Hum Genet. 2018 Nov;26(11):1648-1657. doi: 10.1038/s41431-018-0226-z.
- Elia L, Kunderfranco P, Carullo P, et al. UHRF1 epigenetically orchestrates smooth muscle cell plasticity in arterial disease. J Clin Invest. 2018 Jun 1;128(6):2473-2486. doi: 10.1172/JCI96121.
- Kim M, Kim M, Yoo HJ, Bang YJ, Lee SH, Lee JH. Apolipoprotein A5 gene variants are associated with decreased adiponectin levels and increased arterial stiffness in subjects with low high-density lipoprotein-cholesterol levels. Clin Genet. 2018 Nov;94(5):438-444. doi: 10.1111/cge.13439.
- Tordai DZ, Hajdú N, Rácz R, et al. Genetic factors associated with the development of neuropathy in type 2 diabetes. Int J Mol Sci. 2024 Feb 2;25(3):1815. doi: 10.3390/ijms25031815.
- Ciccacci C, Latini A, Greco C, et al. Association between a MIR499A polymorphism and diabetic neuropathy in type 2 diabetes. J Diabetes Complications. 2018 Jan;32(1):11-17. doi: 10.1016/j.jdiacomp.2017.10.011.
- Alvim RO, Santos PCJL, Bortolotto LA, Mill JG, Pereira AC. Arterial stiffness: pathophysiological and genetic aspects. Int J Cardiovasc Sci. 2017;30(5):433-441. doi: 10.5935/2359-4802.20170053.
- Hufnagel C, Chambres P, Bertrand PR, Dutheil F. The need for objective measures of stress in autism. Front Psychol. 2017 Jan 27;8:64. doi: 10.3389/fpsyg.2017.00064.
- Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:341583. doi: 10.1155/2015/341583.
- Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophy–siology. Circulation. 1996 Mar 1;93(5):1043-65.
- Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017 Sep 28;5:258. doi: 10.3389/fpubh.2017.00258.
- Hillebrand S, Gast KB, de Mutsert R, et al. Heart rate varia–bility and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose-response meta-regression. Europace. 2013 May;15(5):742-9. doi: 10.1093/europace/eus341.
- Serhiyenko A, Baitsar M, Sehin V, Serhiyenko L, Kuznets V, Serhiyenko V. Post-traumatic stress disorder, insomnia, heart rate varia–bility and metabolic syndrome (narrative review). Proc Shevchenko Sci Soc Med Sci. 2024 Jun;73(1):1-10. doi: 10.25040/ntsh2024.01.07.
- Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985 Sep-Oct;8(5):491-498. doi: 10.2337/diacare.8.5.491.
- Serhiyenko VA, Serhiyenko AA. Diabetes mellitus and congestive heart failure. Mìžnarodnij endokrinologìčnij žurnal (Ukraine). 2022;18(1):57-69. doi: 10.22141/2224-0721.18.1.2022.1146.
- American Diabetes Association. Standards of Medical Care in Diabetes-2017 Abridged for Primary Care Providers. Clin Diabetes. 2017 Jan;35(1):5-26. doi: 10.2337/cd16-0067.
- Olivieri F, Biscetti L, Pimpini L, Pelliccioni G, Sabbatinelli J, Giunta S. Heart rate variability and autonomic nervous system imbalance: potential biomarkers and detectable hallmarks of aging and inflammaging. Ageing Res Rev. 2024 Nov;101:102521. doi: 10.1016/j.arr.2024.102521.
- Cha SA, Park YM, Yun JS, et al. Time- and frequency-domain measures of heart rate variability predict cardiovascular outcome in patients with type 2 diabetes. Diabetes Res Clin Pract. 2018 Sep;143:159-169. doi: 10.1016/j.diabres.2018.07.001.
- Ziegler D, Porta M, Papanas N, et al. The role of biofactors in diabetic microvascular complications. Curr Diabetes Rev. 2022;18(4):e250821195830. doi: 10.2174/1871527320666210825112240.
- Maida CD, Daidone M, Pacinella G, Norrito RL, Pinto A, Tuttolomondo A. diabetes and ischemic stroke: An old and new relationship an overview of the close interaction between these diseases. Int J Mol Sci. 2022 Feb 21;23(4):2397. doi: 10.3390/ijms23042397.
- Serhiyenko VA, Sehin VB, Pankiv VI, Serhiyenko AA. Post-traumatic stress disorder, dyssomnias, and metabolic syndrome. Mìžnarodnij endokrinologìčnij žurnal (Ukraine). 2024 Mar;20(1):58-67. doi: 10.22141/2224-0721.20.1.2024.1359.
- Benichou T, Pereira B, Mermillod M, et al. Heart rate varia–bility in type 2 diabetes mellitus: A systematic review and meta-ana–lysis. PLoS One. 2018 Apr 2;13(4):e0195166. doi: 10.1371/journal.pone.0195166.
- Hajdu M, Garmpis K, Vértes V, et al. Determinants of the heart rate variability in type 1 diabetes mellitus. Front Endocrinol (Lau–sanne). 2023 Oct 3;14:1247054. doi: 10.3389/fendo.2023.1247054.
- Dabelea D, Stafford JM, Mayer-Davis EJ, et al.; SEARCH for Diabetes in Youth Research Group. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA. 2017 Feb 28;317(8):825-835. doi: 10.1001/jama.2017.0686.
- Shah AS, El Ghormli L, Gidding SS, et al. Prevalence of arterial stiffness in adolescents with type 2 diabetes in the TODAY cohort: relationships to glycemic control and other risk factors. J Dia–betes Complications. 2018 Aug;32(8):740-745. doi: 10.1016/j.jdiacomp.2018.05.013.
- Shah AS, Urbina EM. Vascular and endothelial function in youth with type 2 diabetes mellitus. Curr Diab Rep. 2017 Jun;17(6):36. doi: 10.1007/s11892-017-0869-0.
- Shang Y, Zhang X, Leng W, et al. Increased fractal dimension of left ventricular trabeculations is associated with subclinical diastolic dysfunction in patients with type 2 diabetes mellitus. Int J Cardiovasc Imaging. 2019 Apr;35(4):665-673. doi: 10.1007/s10554-018-1492-0.
- Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol. 2019 Mar 19;73(10):1189-1206. doi: 10.1016/j.jacc.2018.12.064.
- Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and chronic low-grade inflammation: A narrative review. Problemi Endocrinnoi Patologii. 2024 Mar 14;81(1):77-83. doi: 10.21856/j-PEP.2024.1.10.
- Adam J, Rupprecht S, Künstler ECS, Hoyer D. Heart rate variability as a marker and predictor of inflammation, nosocomial infection, and sepsis — A systematic review. Auton Neurosci. 2023 Nov;249:103116. doi: 10.1016/j.autneu.2023.103116.
- Stone K, Fryer S, Faulkner J, et al. Associations of lower-limb atherosclerosis and arteriosclerosis with cardiovascular risk factors and disease in older adults: The Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis. 2022 Jan;340:53-60. doi: 10.1016/j.atherosclerosis.2021.10.014.
- Li F, Zhang L, Shen Y, et al. Higher glucose fluctuation is associated with a higher risk of cardiovascular disease: insights from pooled results among patients with diabetes. J Diabetes. 2023 May;15(5):368-381. doi: 10.1111/1753-0407.13386.
- Chiang JK, Chiang PC, Kao HH, You WC, Kao YH. Exercise effects on autonomic nervous system activity in type 2 diabetes mellitus patients over time: A meta-regression study. Healthcare (Basel). 2024 Jun 20;12(12):1236. doi: 10.3390/healthcare12121236.
- Nersesyan A, Mišík M, Cherkas A, et al. Use of micronucleus experiments for the detection of human cancer risks: A brief overview. Proc Shevchenko Sci Soc Med Sci. 2021;65(2):50-58. doi: 10.25040/ntsh2021.02.05.
- Amra B, Behjati M, Penzel T, Fietze I, Schoebel C, Sarrafzadegan N. Nocturnal heart rate variation in diabetic and non-diabetic patients with sleep apnea syndrome. Sleep Med. 2017 Jan;29:57-60. doi: 10.1016/j.sleep.2016.11.003.
- Serhiyenko VA, Oliinyk AYu, Pavlovskiy YaI, Kruk OS, Serhiyenko AA. Post-traumatic stress disorder and metabolic syndrome: the role of some antioxidants in treatment. Mìžnarodnij endokrinologìčnij žurnal. 2024;20(6):470-480. doi: 10.22141/2224-0721.20.6.2024.1445.
- Askin L, Cetin M, Turkmen S. Ambulatory blood pressure results and heart rate variability in patients with premature ventri–cular contractions. Clin Exp Hypertens. 2018;40(3):251-256. doi: 10.1080/10641963.2017.1356846.
- De Andrade PE, do Amaral JAT, Paiva LDS, et al. Reduction of heart rate variability in hypertensive elderly. Blood Press. 2017 Dec;26(6):350-358. doi: 10.1080/08037051.2017.1354285.
- He B, Ji D, Zhang B. Hypertension and its correlation with autonomic nervous system dysfunction, heart rate variability and chronic inflammation. Blood Press. 2024 Dec;33(1):2405156. doi: 10.1080/08037051.2024.2405156.
- Al-Trad BA, Faris MA, Al-Smadi M, et al. Cardiac autonomic dysfunction in young obese males is not associated with disturban–ces in pituitary-thyroid axis hormones. Eur Rev Med Pharmacol Sci. 2015;19(9):1689-1695.
- Mustafa G, Kursat FM, Ahmet T, et al. The relationship between erythrocyte membrane fatty acid levels and cardiac autonomic function in obese children. Rev Port Cardiol. 2017 Jul-Aug;36(7–8):499-508. doi: 10.1016/j.repc.2016.10.013.
- Yoo HJ, Hwang SY, Choi KM, et al. Clinical implication of body size phenotype on heart rate variability. Metabolism. 2016 Nov;65(11):1589-1596. doi: 10.1016/j.metabol.2016.08.002.
- Yadav RL, Yadav PK, Yadav LK, Agrawal K, Sah SK, Islam MN. Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration — A risk of CVD. Diabetes Metab Syndr Obes. 2017 Feb 17;10:57-64. doi: 10.2147/DMSO.S123935.
- Dutheil F, Gordon BA, Naughton G, et al. Cardiovascular risk of adipokines: A review. J Int Med Res. 2018 Jun;46(6):2082-2095. doi: 10.1177/0300060517706578.
- Damoun N, Amekran Y, Taiek N, Hangouche AJE. Heart rate variability measurement and influencing factors: towards the standardization of methodology. Glob Cardiol Sci Pract. 2024 Aug 1;2024(4):e202435. doi: 10.21542/gcsp.2024.35.
- Cheng W, Chen H, Tian L, Ma Z, Cui X. Heart rate variabi–lity in different sleep stages is associated with metabolic function and glycemic control in type 2 diabetes mellitus. Front Physiol. 2023 Apr 14;14:1157270. doi: 10.3389/fphys.2023.1157270.
- Hadad R, Larsen BS, Weber P, et al. Night-time heart rate variability identifies high-risk people among people with uncomplicated type 2 diabetes mellitus. Diabet Med. 2021 Jul;38(7):e14559. doi: 10.1111/dme.14559.
- John APP, Udupa K, Avangapur S, et al. Cardiac autonomic dysfunctions in type 2 diabetes mellitus: an investigative study with heart rate variability measures. Am J Cardiovasc Dis. 2022 Aug 15;12(4):224-232.
- Bianchi L, Chiheb S, Banu I, Rezki A, Cosson E, Valensi P. Influence of cardiac autonomic dysfunction and arterial stiffness on subendocardial myocardial viability in patients with type 2 diabetes. Dia–betes Metab. 2016;42(4):297-298. doi: 10.1016/j.diabet.2016.07.014.
- Chorepsima S, Eleftheriadou I, Tentolouris A, et al. Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus. BMC Endocr Disord. 2017 May 19;17(1):27. doi: 10.1186/s12902-017-0178-2.
- Chandra P, Sands RL, Gillespie BW, et al. Relationship bet–ween heart rate variability and pulse wave velocity and their association with patient outcomes in chronic kidney disease. Clin Nephrol. 2014 Jan;81(1):9-19. doi: 10.5414/cn108020.
- Qin X, Yin Q, Zhang Y, et al. Ambulatory arterial stiffness index is associated with the presence and severity of coronary artery disease. Artery Res. 2024;30(Suppl 1):11-23. doi: 10.1007/s44200-023-00043-3.
- Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and the autono–mic nervous system. Endokrynologia. 2023 Dec;28(4):377-392. doi: 10.31793/1680-1466.2023.28-4.377.
- Jha BK, Sherpa ML, Imran M, et al. Progress in understan–ding metabolic syndrome and knowledge of its complex pathophysiology. Diabetology. 2023;4(2):134-159. doi: 10.3390/diabetology4020015.
- Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care. 2017 Jan;40(1):136-154. doi: 10.2337/dc16-2042.
- Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 2016 May 27;118(11):1808-1829. doi: 10.1161/CIRCRESAHA.116.306923.
- Liu L, Wu Q, Yan H, Chen B, Zheng X, Zhou Q. Association between cardiac autonomic neuropathy and coronary artery lesions in patients with type 2 diabetes. Dis Markers. 2020 Dec 30;2020:6659166. doi: 10.1155/2020/6659166.
- Bakkar NZ, Dwaib HS, Fares S, Eid AH, Al-Dhaheri Y, El-Yazbi AF. Cardiac autonomic neuropathy: a progressive consequence of chronic low-grade inflammation in type 2 diabetes and related metabolic disorders. Int J Mol Sci. 2020 Nov 27;21(23):9005. doi: 10.3390/ijms21239005.
- Monteiro CI, Simões RP, Goulart CL, Silva CDD, Borghi-Silva A, Mendes RG. Arterial stiffness in type 2 diabetes: determinants and indication of a discriminative value. Clinics (Sao Paulo). 2021 Feb 22;76:e2172. doi: 10.6061/clinics/2021/e2172.
- Zilliox LA, Russell JW. Is there cardiac autonomic neuropathy in prediabetes? Auton Neurosci. 2020 Dec;229:102722. doi: 10.1016/j.autneu.2020.102722.
- Chinnaiyan KM. Role of stress management for cardiovascular disease prevention. Curr Opin Cardiol. 2019 Sep;34(5):531-535. doi: 10.1097/HCO.0000000000000649.
- Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyo–pathy: A hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018 Jan;61(1):21-28. doi: 10.1007/s00125-017-4390-4.