Международный эндокринологический журнал Том 21, №1, 2025
Вернуться к номеру
Посттравматичний стресовий розлад, цукровий діабет і альфа-ліпоєва кислота
Авторы: Сергієнко В.О. (1), Чемерис О.М. (1), Головач C.Ю. (2), Сергієнко О.О. (1)
(1) - Львівський національний медичний університет імені Данила Галицького, м. Львів, Україна
(2) - Військово-медичний клінічний центр Західного регіону, м. Львів, Україна
Рубрики: Эндокринология
Разделы: Справочник специалиста
Версия для печати
Посттравматичний стресовий розлад (ПТСР) є прогностичним фактором для розвитку метаболічного синдрому (МС), цукрового діабету (ЦД) 2-го типу, підвищує ризик виникнення кардіометаболічних патологій і нейродегенеративних захворювань (НДЗ). Водночас ЦД 2-го типу та МС також здатні спричиняти розвиток основних неврозоподібних та психіатричних симптомів, притаманних для ПТСР. Їхній вплив може проявлятися через негативні ефекти на центральну нервову систему, зокрема розвиток НДЗ. Оксидантний стрес (ОС) і хронічне запалення низької інтенсивності (ХЗНІ) відіграють важливу роль у патофізіології ПТСР, МС та ЦД 2-го типу, роблячи їх основними терапевтичними мішенями. Цілеспрямований вплив на ОС, ХЗНІ та порушення мітохондріального метаболізму, використання антиоксидантів, зокрема α-ліпоєвої кислоти (α-lipoic acid, ALA), може позитивно вплинути не лише на перебіг коморбідних захворювань, але й на основні прояви ПТСР. In vitro та in vivo продемонстровано, що ALA модулює низку шляхів, пов’язаних із ОС. Крім того, результати клінічних досліджень підтверджують антиоксидантний механізм дії ALA у пацієнтів з ожирінням, МС, ЦД 1-го та 2-го типів. Нейропротекторна активність ALA активно вивчається і засвідчує свою перспективність як терапевтичний підхід в лікуванні ПТСР та НДЗ. Попри значний терапевтичний потенціал ALA, її клінічне застосування обмежене низкою суттєвих бар’єрів. Зокрема, клінічним дослідженням бракує стандартизованих протоколів лікування, а також детальної оцінки ефективності ALA як монотерапії. Крім того, фармакокінетичний профіль ALA залишається обмеженим, що є одним із основних факторів, які ускладнюють її використання. У цьому контексті прослідковуються певні перспективи щодо створення систем транспортування ALA на основі наночастинок, які потенційно здатні вирішити низку зазначених проблем. Крім того, технології застосування твердих ліпідних наночастинок, зокрема ніосом, ліпосом, наноструктурованих ліпідних носіїв і міцел, забезпечують можливість місцевого або системного використання ALA. Проте для остаточного визначення клінічної доцільності та терапевтичного потенціалу ALA необхідне проведення подальших доклінічних і клінічних досліджень. Пошук проводився в Scopus, Science Direct (від Elsevier) і PubMed, включно з базами даних Medline. Використані ключові слова «α-ліпоєва кислота», «посттравматичний стресовий розлад», «цукровий діабет», «метаболічний синдром». Для виявлення результатів досліджень, які не вдалося знайти під час онлайн-пошуку, використовувався ручний пошук бібліографії публікацій.
Post-traumatic stress disorder (PTSD) is a prognostic factor for the development of metabolic syndrome (MetS), type 2 diabetes mellitus (T2DM), increases the risk of cardiometabolic pathologies and neurodegenerative diseases. At the same time, T2DM and MetS can also cause the development of major neurosis-like and psychiatric symptoms characteristic of PTSD. Their influence can manifested through negative effects on the central nervous system, in particular the development of neurodegenerative diseases. Oxidative stress and chronic low-grade inflammation play an important role in the pathophysiology of PTSD, MetS, and T2DM, making them the main therapeutic targets. Targeted effects on oxidative stress, chronic low-grade inflammation and mitochondrial metabolism disorders, the use of antioxidants, in particular α-lipoic acid (ALA), can positively affect not only the course of comorbidities but also the main manifestations of PTSD. In vitro and in vivo studies have demonstrated that ALA modulates a number of pathways associated with oxidative stress. In addition, the results of clinical trials confirm the antioxidant mechanism of ALA action in patients with obesity, MetS, diabetes type 1 and 2. The neuroprotective activity of ALA is being actively studied and is proving promising as a therapeutic approach in the treatment of PTSD and neurodegenerative diseases. Despite the significant therapeutic potential of ALA, its clinical application is limited by several significant barriers. In particular, clinical trials lack standardized treatment protocols, as well as a detailed assessment of the effectiveness of ALA alone. In addition, the pharmacokinetic profile of ALA remains limited, which is one of the main factors that hinder its use. In this context, there are certain prospects for the development of ALA transportation systems based on nanoparticles, which can potentially solve a number of these problems. In addition, the technologies of solid lipid nanoparticles such as niosomes, liposomes, nanostructured lipid carriers and micelles provide the possibility of local or systemic use of ALA. However, further preclinical and clinical studies are needed to definitively determine the clinical feasibility and therapeutic potential of ALA. The search was conducted in Scopus, Science Direct (from Elsevier) and PubMed, including MEDLINE databases. The keywords used were “α-lipoic acid”, “post-traumatic stress disorder”, “diabetes mellitus”, “metabolic syndrome”. A manual search of the bibliography of publications was used to identify study results that could not be found during the online search.
α-ліпоєва кислота; посттравматичний стресовий розлад; цукровий діабет; метаболічний синдром; огляд літератури
α-lipoic acid; post-traumatic stress disorder; diabetes mellitus; metabolic syndrome; literature review
Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.
- Ye J, Li L, Wang M, et al. Diabetes mellitus promotes the development of atherosclerosis: The role of NLRP3. Front Immunol. 2022 Jun 29;13:900254. doi: 10.3389/fimmu.2022.900254.
- Caturano A, D’Angelo M, Mormone A, et al. Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023 Aug 12;45(8):6651-6666. doi: 10.3390/cimb45080420.
- Ghulam A, Bonaccio M, Costanzo S, et al. Psychological resilience, cardiovascular disease, and metabolic disturbances: A systematic review. Front Psychol. 2022 Feb 24;13:817298. doi: 10.3389/fpsyg.2022.817298.
- American Psychiatric Association (APA). Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed. Washington, DC: American Psychiatric Publishing. 2013:280. doi: 10.1176/appi. books.9780890425596.
- Qassem T, Aly-ElGabry D, Alzarouni A, Abdel-Aziz K, Arnone D. Psychiatric co-morbidities in post-traumatic stress disorder: detailed findings from the adult psychiatric morbidity survey in the English population. Psychiatr Q. 2021 Mar;92(1):321-330. doi: 10.1007/s11126-020-09797-4.
- Pandey A, Wells CR, Stadnytskyi V, et al. Disease burden among Ukrainians forcibly displaced by the 2022 Russian invasion. Proc Natl Acad Sci USA. 2023 Feb 21;120(8):e2215424120. doi: 10.1073/pnas.2215424120.
- Serhiyenko V, Sehin V, Pankiv V, Serhiyenko A. Post-traumatic stress disorder, dyssomnias, and metabolic syndrome. Mìžnarodnij endokrinologìčnij žurnal. 2024;20(1):58-67. doi: 10.22141/2224-0721.20.1.2024.1359.
- Serhiyenko A, Baitsar M, Sehin V, Serhiyenko L, Kuznets V, Serhiyenko V. Post-traumatic stress disorder, insomnia, heart rate variability and metabolic syndrome (narrative review). Proc Shevchenko Sci Soc. Med Sci. 2024 Jun;73(1):1-10. doi: 10.25040/ntsh2024.01.07.
- Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology. 2017 Jan;42(1):254-270. doi: 10.1038/npp.2016.146.
- Bakkar NZ, Dwaib HS, Fares S, Eid AH, Al-Dhaheri Y, El-Yazbi AF. Cardiac autonomic neuropathy: A progressive consequence of chronic low-grade inflammation in type 2 diabetes and related metabolic disorders. Int J Mol Sci. 2020 Nov 27;21(23):9005. doi: 10.3390/ijms21239005.
- Mohamed SM, Shalaby MA, El-Shiek RA, El-Banna HA, Emam SR, Bakr AF. Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chem. Adv. 2023 Dec 23;3:100335. doi: 10.1016/j.focha.2023.100335.
- Vancampfort D, Rosenbaum S, Ward PB, et al. Type 2 diabetes among people with posttraumatic stress disorder: systematic review and meta-analysis. Psychosom Med. 2016 May;78(4):465-473. doi: 10.1097/PSY.0000000000000297.
- Edmondson D, von Känel R. Post-traumatic stress disorder and cardiovascular disease. Lancet Psychiatry. 2017 Apr;4(4):320-329. doi: 10.1016/S2215-0366(16)30377-7.
- Bartoli F, Crocamo C, Carrà1 G. Metabolic dysfunctions in people with post-traumatic stress disorder. J Psychopathol. 2020;26(1):85-91. doi: 10.36148/2284-0249-372.
- Wang Z, Caughron B, Young MRI. Posttraumatic stress disorder: An immunological disorder? Front Psychiatry. 2017 Nov 6;8:222. doi: 10.3389/fpsyt.2017.00222.
- Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and chronic low-grade inflammation: A narrative review. Problemi Endocrinnoi Patologii. 2024;81(1):77-83. doi: 10.21856/j-PEP.2024.1.10.
- Kibler JL, Ma M, Tursich M, et al. Cardiovascular risks in relation to posttraumatic stress severity among young trauma-exposed women. J Affect Disord. 2018 Dec 1;241:147-153. doi: 10.1016/j. jad.2018.08.007.
- Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and the autonomic nervous system. Endokrynologia. 2023;28(4):377-392. doi: 10.31793/1680-1466.2023.28-4.377.
- Yan W, Diao S, Fan Z. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells. Stem Cell Res Ther. 2021 Feb 17;12(1):140. doi: 10.1186/s13287-021-02194-z.
- Serhiyenko VA, Oliinyk AYu, Pavlovskiy YaI, Kruk OS, Ser–hiyenko AA. Post-traumatic stress disorder and metabolic syndrome: the role of some antioxidants in treatment. Mìžnarodnij endokrinologìčnij žurnal. 2024;20(6):470-480. doi: 10.22141/2224-0721.20.6.2024.1445.
- Wolf EJ, Bovin MJ, Green JD, et al. Longitudinal associations between post-traumatic stress disorder and metabolic syndrome severity. Psychol Med. 2016 Jul;46(10):2215-26. doi: 10.1017/S0033291716000817.
- Oroian BA, Ciobica A, Timofte D, Stefanescu C, Serban IL. New metabolic, digestive, and oxidative stress-related manifestations associated with posttraumatic stress disorder. Oxid Med Cell Longev. 2021 Dec 20;2021:5599265. doi: 10.1155/2021/5599265.
- Bersani FS, Mellon SH, Lindqvist D, et al. Novel pharmacological targets for combat PTSD-metabolism, inflammation, the gut microbiome, and mitochondrial dysfunction. Mil Med. 2020 Jan 7;185(Suppl 1):311-318. doi: 10.1093/milmed/usz260.
- Bellavite P. Neuroprotective potentials of flavonoids: experimental studies and mechanisms of action. Antioxidants (Basel). 2023 Jan 27;12(2):280. doi: 10.3390/antiox12020280.
- Rani M, Aggarwal R, Vohra K. Effect of N-acetylcysteine on metabolic profile in metabolic syndrome patients. Metab Syndr Relat Disord. 2020 Sep;18(7):341-346. doi: 10.1089/met.2020.0017.
- Mellon SH, Bersani FS, Lindqvist D, et al. Metabolomic ana–lysis of male combat veterans with post traumatic stress disorder. PLoS One. 2019 Mar 18;14(3):e0213839. doi: 10.1371/journal.pone.0213839.
- Serhiyenko VA, Serhiyenko AA. Diabetes mellitus and congestive heart failure. Mìžnarodnij endokrinologìčnij žurnal. 2022;18(1):57-69. doi: 10.22141/2224-0721.18.1.2022.1146.
- Aaseth J, Roer GE, Lien L, Bjrklund G. Is there a relationship between PTSD and complicated obesity? A review of the literature. Biomed Pharmacother. 2019 Sep;117:108834. doi: 10.1016/j. biopha.2019.108834.
- Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020 Aug 30;21(17):6275. doi: 10.3390/ijms21176275.
- Zong Y, Li H, Liao P, et al. Mitochondrial dysfunction: mecha–nisms and advances in therapy. Signal Transduct Target Ther. 2024 May 15;9(1):124. doi: 10.1038/s41392-024-01839-8.
- Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024 Mar 4;9(1):53. doi: 10.1038/s41392-024-01757-9.
- Najafi N, Mehri S, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phytother Res. 2022 Jun;36(6):2300-2323. doi: 10.1002/ptr.7406.
- Serhiyenko VA, Sehin VB, Serhiyenko AA. Questionnaire “Composite assessment of autonomic symptoms 31” (COMPASS 31): validation and possibilities of application in the diagnostics of autono–mic dysfunction in patients with type 2 diabetes mellitus. Endokrynologia. 2024;29(4):338-346. doi: 10.31793/1680-1466.2024.29-4.338.
- Watson K, Nasca C, Aasly L, McEwen B, Rasgon N. Insulin resistance, an unmasked culprit in depressive disorders: promises for interventions. Neuropharmacology. 2018 Jul 1;136(Pt B):327-334. doi: 10.1016/j.neuropharm.2017.11.038.
- Khan MA, Alam Q, Haque A, et al. Current progress on peroxisome proliferator-activated receptor gamma agonist as an emerging therapeutic approach for the treatment of Alzheimer’s disease: An update. Curr Neuropharmacol. 2019;17(3):232-246. doi: 10.2174/1570159X16666180828100002.
- Akagawa M, Nakano M, Ikemoto K. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Biosci Biotechnol Biochem. 2016;80(1):13-22. doi: 10.1080/09168451.2015.1062715.
- Jonscher KR, Chowanadisai W, Rucker RB. Pyrroloquinoline-Quinone Is more than an antioxidant: A vitamin-like accessory factor important in health and disease prevention. Biomolecules. 2021 Sep 30;11(10):1441. doi: 10.3390/biom11101441.
- Moulton CD, Hopkins CWP, Ismail K, Stahl D. Repositioning of diabetes treatments for depressive symptoms: A systematic review and meta-analysis of clinical trials. Psychoneuroendocrinology. 2018 Aug;94:91-103. doi: 10.1016/j.psyneuen.2018.05.010.
- Naguy A. Omega-3 use in psychiatry: evidence-based or elegance-based? J Diet Suppl. 2018 Jan 2;15(1):124-128. doi: 10.1080/19390211.2017.1326432.
- Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pa–riante CM, Howes OD. Inflammatory markers in depression: A meta-–analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun. 2020 Jul;87:901-909. doi: 10.1016/j.bbi.2020.02.010.
- Kothgassner OD, Pellegrini M, Goreis A, et al. Hydrocortisone administration for reducing post-traumatic stress symptoms: A systematic review and meta-analysis. Psychoneuroendocrinology. 2021 Apr;126:105168. doi: 10.1016/j.psyneuen.2021.105168.
- Matsuoka YJ, Hamazaki K, Nishi D, Hamazaki T. Change in blood levels of eicosapentaenoic acid and posttraumatic stress symptom: A secondary analysis of data from a placebo-controlled trial of omega3 supplements. J Affect Disord. 2016 Nov 15;205:289-291. doi: 10.1016/j.jad.2016.08.005.
- Serhiyenko VA, Serhiyenko AA. Ezetimibe and diabetes mellitus: a new strategy for lowering cholesterol. Mìžnarodnij endokrinologìčnij žurnal. 2022;18(5):63-75. doi: 10.22141/2224-0721.18.5.2022.1190.
- Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017 Sep;60(9):1577-1585. doi: 10.1007/s00125-017-4342-z.
- Kirchner J, Brüne B, Namgaladze D. AICAR inhibits NFκB DNA binding independently of AMPK to attenuate LPS-triggered inflammatory responses in human macrophages. Sci Rep 2018;8:7801. doi: 10.1038/s41598-018-26102-3.
- Alcocer LA, Bryce A, De Padua Brasil D, et al. The pivotal role of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers in hypertension management and cardiovascular and renal protection: A critical appraisal and comparison of international guidelines. Am J Cardiovasc Drugs. 2023 Nov;23(6):663-682. doi: 10.1007/s40256-023-00605-5.
- van Sloten TT, Souverein PC, Stehouwer CD, Driessen JH. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and risk of depression among older people with hypertension. J Psychopharmacol. 2022 May;36(5):594-603. doi: 10.1177/02698811221082470.
- Serhiyenko VA, Serhiyenko AA. Diabetic cardiac autonomic neuropathy. In: Rodriguez-Saldana J, editor. The diabetes textbook: clinical principles, patient management and public health issues. 2nd ed. Cham: Springer. 2023:939-966. doi: 10.1007/978-3-031-25519-9_57.
- Back SE, McCauley JL, Korte KJ, et al. A double-blind, randomized, controlled pilot trial of N-acetylcysteine in veterans with posttraumatic stress disorder and substance use disorders. J Clin Psychiatry. 2016 Nov;77(11):e1439-e1446. doi: 10.4088/JCP.15m10239.
- Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci. 2023 Oct 12;30(1):86. doi: 10.1186/s12929-023-00975-7.
- Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther. 2023 May 25;8(1):217. doi: 10.1038/s41392-023-01481-w.
- Maciejczyk M, Żebrowska E, Nesterowicz M, Żendzian-–Piotrowska M, Zalewska A. α-lipoic acid strengthens the antioxidant barrier and reduces oxidative, nitrosative, and glycative damage, as well as inhibits inflammation and apoptosis in the hypothalamus but not in the cerebral cortex of insulin-resistant rats. Oxid Med Cell Longev. 2022 Mar 29;2022:7450514. doi: 10.1155/2022/7450514.
- Chaudhary P, Janmeda P, Docea AO, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysio–logy of human diseases. Front Chem. 2023 May 10;11:1158198. doi: 10.3389/fchem.2023.1158198.
- Serhiyenko VA, Serhiyenko LM, Sehin VB, Serhiyenko AA. Effect of alpha-lipoic acid on arterial stiffness parameters in type 2 diabetes mellitus patients with cardiac autonomic neuropathy. Endocr Regul. 2021 Dec 7;55(4):224-233. doi: 10.2478/enr-2021-0024.
- Salehi B, Berkay YY, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019 Aug 9;9(8):356. doi: 10.3390/biom9080356.
- Capece U, Moffa S, Improta I, et al. Alpha-lipoic acid and glucose metabolism: A comprehensive update on biochemical and therapeutic features. Nutrients. 2022 Dec 21;15(1):18. doi: 10.3390/nu15010018.
- Sokolova LK, Pushkarev VM, Tronko МD. Neuroprotective properties of α-lipoic acid in patients with diabetes. Problems of Endocrine Pathology. 2021;78(4):146-158. doi: 10.21856/j-PEP.2021.4.19.
- Kravchun N, Dunaieva I, Kravchun P. R-enantiomer of α-lipoic acid. Opportunities and prospects for clinical use. Mìžnarodnij endokrinologìčnij žurnal. 2021;17(3):258-270. doi: 10.22141/2224-0721.17.3.2021.232661.
- Shanaida M, Lysiuk R, Mykhailenko O, et al. Alpha-lipoic acid: an antioxidant with anti-aging properties for disease therapy. Curr Med Chem. 2024 Apr 19. doi: 10.2174/0109298673300496240416114827.
- Dieter F, Esselun C, Eckert GP. Redox active α-lipoic acid differentially improves mitochondrial dysfunction in a cellular model of Alzheimer and its control cells. Int J Mol Sci. 2022 Aug 16;23(16):9186. doi: 10.3390/ijms23169186.
- Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023 Oct;97(10):2499-2574. doi: 10.1007/s00204-023-03562-9.
- Superti F, Russo R. Alpha-lipoic acid: biological mechanisms and health benefits. Antioxidants (Basel). 2024 Oct 12;13(10):1228. doi: 10.3390/antiox13101228.
- Luo X, Xie D, Wu T, et al. Evaluation of the protective roles of alpha-lipoic acid supplementation on nanomaterial-induced toxicity: A meta-analysis of in vitro and in vivo studies. Front Nutr. 2022 Sep 6;9:991524. doi: 10.3389/fnut.2022.991524.
- Kabin E, Dong Y, Roy S, et al. α-lipoic acid ameliorates consequences of copper overload by up-regulating selenoproteins and decreasing redox misbalance. Proc Natl Acad Sci USA. 2023 Oct 3;120(40):e2305961120. doi: 10.1073/pnas.2305961120.
- Skibska B, Kochan E, Stanczak A, Lipert A, Skibska A. Antioxidant and anti-inflammatory effects of α-lipoic acid on lipopolysaccharide-induced oxidative stress in rat kidney. Arch Immunol Ther Exp (Warsz). 2023 Jun 28;71(1):16. doi: 10.1007/s00005-023-00682-z.
- Jeffrey S, Isaac Samraj P, Sundara Raj B. Therapeutic benefits of alpha-lipoic acid supplementation in diabetes mellitus: A narrative review. J Diet Suppl. 2022;19(4):566-586. doi: 10.1080/19390211.2021.2020387.
- Rochette L, Ghibu S. Mechanics insights of alpha-lipoic acid against cardiovascular diseases during COVID-19 infection. Int J Mol Sci. 2021 Jul 26;22(15):7979. doi: 10.3390/ijms22157979.
- Jibril AT, Jayedi A, Shab-Bidar S. Efficacy and safety of oral alpha-lipoic acid supplementation for type 2 diabetes management: a systematic review and dose-response meta-analysis of randomized trials. Endocr Connect. 2022 Sep 26;11(10):e220322. doi: 10.1530/EC-22-0322.
- Tibullo D, Li Volti G, Giallongo C, et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res. 2017 Nov;66(11):947-959. doi: 10.1007/s00011-017-1079-6.
- Mousavi SM, Shab-Bidar S, Kord-Varkaneh H, Khorshidi M, Djafarian K. Effect of alpha-lipoic acid supplementation on lipid profile: A systematic review and meta-analysis of controlled clinical trials. Nutrition. 2019 Mar;59:121-130. doi: 10.1016/j.nut.2018.08.004.
- Haghighatdoost F, Hariri M. Does alpha-lipoic acid affect li–pid profile? A meta-analysis and systematic review on randomized controlled trials. Eur J Pharmacol. 2019 Mar 15;847:1-10. doi: 10.1016/j.ejphar.2019.01.001.
- Viana MDM, Lauria PSS, Lima AA, Opretzka LCF, Marcelino HR, Villarreal CF. Alpha-lipoic acid as an antioxidant strategy for managing neuropathic pain. Antioxidants (Basel). 2022 Dec 8;11(12):2420. doi: 10.3390/antiox11122420.
- Bellini C, Mancin F, Papini E, Tavano R. Nanotechnological approaches to enhance the potential of α-lipoic acid for application in the clinic. Antioxidants (Basel). 2024 Jun 9;13(6):706. doi: 10.3390/antiox13060706.
- Kim N, Lee HJ. Redox-Active metal ions and amyloid-degrading enzymes in Alzheimer’s disease. Int J Mol Sci. 2021 Jul 19;22(14):7697. doi: 10.3390/ijms22147697.
- Acevedo K, Masaldan S, Opazo CM, Bush AI. Redox active metals in neurodegenerative diseases. J Biol Inorg Chem. 2019 Dec;24(8):1141-1157. doi: 10.1007/s00775-019-01731-9.
- Monreal-Corona R, Biddlecombe J, Ippolito A, Mora-Diez N. Theoretical study of the iron complexes with lipoic and dihydrolipoic acids: exploring secondary antioxidant activity. Antioxidants (Basel). 2020 Jul 28;9(8):674. doi: 10.3390/antiox9080674.
- Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxi–dative stress and antioxidants in neurodegenerative disorders. Antioxidants (Basel). 2023 Feb 18;12(2):517. doi: 10.3390/antiox12020517.
- Tripathi AK, Ray AK, Mishra SK, Bishen SM, Mishra H, Khurana A. Molecular and therapeutic insights of alpha-lipoic acid as a potential molecule for disease prevention. Rev Bras Farmacogn. 2023;33(2):272-287. doi: 10.1007/s43450-023-00370-1.
- Khan A, Khan SU, Khan A, et al. Anti-inflammatory and anti-–rheumatic potential of selective plant compounds by targeting TLR-4/AP-1 signaling: A comprehensive molecular docking and si–mulation approaches. Molecules. 2022 Jul 5;27(13):4319. doi: 10.3390/mo–lecules27134319.
- Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Features of circadian rhythms of heart rate variability, arterial stiffness and outpatient monitoring of blood pressure in diabetes mellitus: data, mechanisms and consequences. In: Sinha RP, editor. Circadian rhythms and their importance. New York: Nova Science Publishers. 2022:279-341. doi: 10.52305/GXME8274.
- Ostadmohammadi V, Raygan F, Asemi Z. Alpha-lipoic acid administration affects psychological status and markers of inflammation and oxidative damage in patients with type 2 diabetes and coronary heart disease. J Diabetes Metab Disord. 2022 Jun 4;21(2):1283-1291. doi: 10.1007/s40200-022-01031-1.
- Çekici H, Bakırhan YE. Potential therapeutic agent in psychiat–ric and neurological diseases: Alpha lipoic acid. Acta Psychopathol. 2018 Apr;4(2):9. doi: 110.4172/2469-6676.100165.
- Zhao H, Bu M, Li B, Zhang Y. Lipoic acid inhibited desflurane-induced hippocampal neuronal apoptosis through Caspase3 and NF-KappaB dependent pathway. Tissue Cell. 2018 Feb;50:37-42. doi: 10.1016/j.tice.2017.12.001.
- Spain R, Powers K, Murchison C, et al. Lipoic acid in se–condary progressive MS: A randomized controlled pilot trial. Neurol Neuroimmunol Neuroinflamm. 2017 Jun 28;4(5):e374. doi: 10.1212/NXI.0000000000000374.
- Metwaly HH, Fathy SA, Abdel Moneim MM, et al. Chitosan and solid lipid nanoparticles enhance the efficiency of alpha-lipoic acid against experimental neurotoxicity. Toxicol Mech Methods. 2022 May;32(4):268-279. doi: 10.1080/15376516.2021.1998275.
- Dugbartey GJ, Alornyo KK, Dapaa-Addo CO, Botchway E, Kwashie EK, Harley Y. Alpha-lipoic acid: A promising pharmacotherapy seen through the lens of kidney diseases. Curr Res Pharmacol Drug Discov. 2024 Oct 26;7:100206. doi: 10.1016/j.crphar.2024.100206.
- Lalić-Popović MN, Vuković MM, Jovičić-Bata JN, Čanji-Panić JM, Todorović NB. Comparison of formulation characteristics of drugs and dietary supplements containing alpha-lipoic acid relevant to therapeutic efficacy. Eur Rev Med Pharmacol Sci. 2023 Apr;27(7):3159-3170. doi: 10.26355/eurrev_202304_31950.
- Fogacci F, Rizzo M, Krogager C, et al. Safety Evaluation of α-lipoic acid supplementation: A systematic review and meta-analysis of randomized placebo-controlled clinical studies. Antioxidants (Basel). 2020 Oct 19;9(10):1011. doi: 10.3390/antiox9101011.
- Gumral N, Aslankoc R, Senol N, Cankara FN. Protective Effect of alpha-lipoic acid against liver damage induced by ciga–rette smoke: An in vivo study. Saudi J Med Med Sci. 2021 May-Aug;9(2):145-151. doi: 10.4103/sjmms.sjmms_387_20.
- Yan S, Lu J, Chen B, et al. The multifaceted role of alpha-lipoic acid in cancer prevention, occurrence, and treatment. Antioxidants (Basel). 2024 Jul 25;13(8):897. doi: 10.3390/antiox13080897.
- Choudhary P, Dutta S, Moses JA, Anandharamakrishnan C. Recent developments in encapsulation of α-lipoic acid for enhanced bioavailability and stability. Qual Assu. Saf Crops Foods. 2023;15(1):123-138. doi: 10.15586/qas.v15i1.1081.
- Lan X, Boetje L, Pelras T, Ye C, Silvianti F, Loos K. Lipoic acid-based vitrimer-like elastomer. Polym Chem. 2023;14(44):5014-5020. doi: 10.1039/d3py00883e.
- De Matteis V, Rinaldi R. Toxicity assessment in the nanoparticle era. Adv Exp Med Biol. 2018;1048:1-19. doi: 10.1007/978-3-319-72041-8_1.
- Malik S, Muhammad K, Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules. 2023 Sep 14;28(18):6624. doi: 10.3390/molecules28186624.
- Gupta D, Roy P, Sharma R, Kasana R, Rathore P, Gupta TK. Recent nanotheranostic approaches in cancer research. Clin Exp Med. 2024 Jan 19;24(1):8. doi: 10.1007/s10238-023-01262-3.
- Kothari IR, Mazumdar S, Sharma S, Italiya K, Mittal A, Chitkara D. Docetaxel and alpha-lipoic acid co-loaded nanoparticles for cancer therapy. Ther Deliv. 2019 Apr;10(4):227-240. doi: 10.4155/tde-2018-0074.
- Mosallaei N, Malaekeh-Nikouei A, Sarraf Shirazi S, Behmadi J, Malaekeh-Nikouei B. A comprehensive review on alpha-lipoic acid delivery by nanoparticles. Bioimpacts. 2024;14(6):30136. doi: 10.34172/bi.2024.30136.
- Tudose M, Culita DC, Musuc AM, et al. Lipoic acid functionalized SiO2@Ag nanoparticles. Synthesis, characterization and evaluation of biological activity. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:499-506. doi: 10.1016/j.msec.2017.05.083.
- Abdelkader NF, El-Batal AI, Amin YM, Hawas AM, Hassan SHM, Eid NI. Neuroprotective effect of gold nanoparticles and alpha-lipoic acid mixture against radiation-induced brain dama–ge in rats. Int J Mol Sci. 2022 Aug 25;23(17):9640. doi: 10.3390/ijms23179640.
- Xi Y, Pan W, Liu Y, et al. α-lipoic acid loaded hollow gold nanoparticles designed for osteoporosis treatment: preparation, chara–cterization and in vitro evaluation. Artif Cells Nanomed Biotechnol. 2023 Dec;51(1):131-138. doi: 10.1080/21691401.2022.2149542.
- Sawie HG, Khadrawy YA, El-Gizawy MM, Mourad HH, Omara EA, Hosny EN. Effect of alpha-lipoic acid and caffeine-loa–ded chitosan nanoparticles on obesity and its complications in liver and kidney in rats. Naunyn Schmiedebergs Arch Pharmacol. 2023 Nov;396(11):3017-3031. doi: 10.1007/s00210-023-02507-4.
- Hosny EN, Sawie HG, Abou-Seif HS, Khadrawy YA. Effect of caffeine-chitosan nanoparticles and α-lipoic acid on the cardiovascular changes induced in rat model of obesity. Int Immunopharmacol. 2024 Mar 10;129:111627. doi: 10.1016/j.intimp.2024.111627.
- Mendoza-Muñoz N, Urbán-Morlán Z, Leyva-Gómez G, Zambrano-Zaragoza ML, Piñón-Segundo E, Quintanar-Guerrero D. Solid Lipid Nanoparticles: An Approach to Improve Oral Drug Deli–very. J Pharm Pharm Sci. 2021;24:509-532. doi: 10.18433/jpps31788.
- Solana-Manrique C, Sanz FJ, Martínez-Carrión G, Paricio N. Antioxidant and neuroprotective effects of carnosine: therapeutic implications in neurodegenerative diseases. Antioxidants (Basel). 2022 Apr 26;11(5):848. doi: 10.3390/antiox11050848.
- Kubota Y, Musashi M, Nagasawa T, Shimura N, Igarashi R, Yamaguchi Y. Novel nanocapsule of α-lipoic acid reveals pigmentation improvement: α-lipoic acid stimulates the proliferation and diffe–rentiation of keratinocyte in murine skin by topical application. Exp. Dermatol. 2019;28(Suppl. 1):55-63.
- Çoban Ö, Yıldırım S, Bakır T. Alpha-lipoic acid and cyanocobalamin co-loaded nanoemulsions: Development, characterization, and evaluation of stability. J Pharm Innov. 2022;17(2):510-520. doi: 10.1007/s12247-020-09531-4.
- Crescenzo AD, Cacciatore I, Petrini M, et al. Gold nanoparticles as scaffolds for poor water soluble and difficult to vehiculate antiparkinson codrugs. Nanotechnology. 2017 Jan 13;28(2):025102. doi: 10.1088/1361-6528/28/2/025102.
- Piersimoni ME, Teng X, Cass AEG, Ying L. Antioxidant lipoic acid ligand-shell gold nanoconjugates against oxidative stress caused by α-synuclein aggregates. Nanoscale Adv. 2020 Oct 21;2(12):5666-5681. doi: 10.1039/d0na00688b.
- Haidar MK, Timur SS, Kazanci A, et al. Composite nanofibers incorporating alpha lipoic acid and atorvastatin provide neuroprotection after peripheral nerve injury in rats. Eur J Pharm Biopharm. 2020 Aug;153:1-13. doi: 10.1016/j.ejpb.2020.05.032.
- Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants (Basel). 2022 Feb 17;11(2):408. doi: 10.3390/antiox11020408.
- DI Giuseppe G, Ciccarelli G, Cefalo CM, et al. Prediabetes: how pathophysiology drives potential intervention on a subclinical disease with feared clinical consequences. Minerva Endocrinol (Torino). 2021 Sep;46(3):272-292. doi: 10.23736/S2724-6507.21.03405-9.
- Pop AL, Crișan S, Bârcă M, et al. Evaluation of dissolution profiles of a newly developed solid oral immediate-release formula containing alpha-lipoic Acid. Processes. 2021;9(1):176. doi: 10.3390/pr9010176.